

工业级倾角传感器用户手册

VRU 620PRC-CAN (2.0B)

User 's manual

Date: 2025.5

注意:

惯性微系统(大连)有限公司有权更改或修改本文所包含信息, 恕不另行通知。客户可自行获得最新修订的文档。

惯性微系统 (大连) 有限公司

地址: 大连市高新技术产业园区高新街 2 号 3F

目录

1. 产品概述	1
2. 产品应用	1
2.1 无人驾驶工程机械动臂/货箱角度测量	1
2.2 道路、桥梁、轨道、建筑、工业设备倾角测量	1
2.3 波浪补偿与平台稳定	2
3. 机电性能	3
3.1 物理性能	3
3.2 电气连接	3
3.3 环境可靠性	3
3.4 电磁兼容性	3
4. 感测性能	4
4.1 系统性能参数	4
4.2 稳定性性能参数	4
4.3 线性性能参数	4
5. 数据通信协议	5
5.1 协议基础	5
5.1.1 通信方式	5
5.1.2 数据类型	5
5.1.3 报文类型	5
5.2 报文标识符	6
5.3 报文数据体	6
5.3.1 发送报文的数据体	6
5.3.2 接收报文的数据体	8
6. 产品组件	10
7. 机械尺寸	10
8. 电缆与航空连接器引脚定义	11
9. 通信接口	11
10. 安装使用指南	11

1. 产品概述

VRU620PRC-CAN 工业级倾角传感器设备,是一种集成 VRU620 倾角传感器微系统芯片的产品,它具有较宽的输入电压(5-60V),数据输出接口为 CAN2. 0B 总线接口,符合 J1939 通信协议。它是一种智能融合传感器,用于描述物体倾斜姿态,可输出三个轴向的加速度、角速度及其俯仰角、横滚角等 8 种数据。它是针对工业领域倾角测量应用而设计的高性能低成本惯性传感器;是基于 MEMS 技术的垂直参考单元(VRU),通过特定的传感器数据算法,解算出三维姿态数据;采用高分子材料一体一次全固态成型技术封装成型,具有优异的抗振动、抗冲击、耐温湿、耐腐蚀和防水防尘性能。

2. 产品应用

工业级倾角传感器 VRU620PRC-CAN 设备能够实时描述物体的倾斜姿态,可以应用于道路、桥梁、轨道、建筑、工业设备倾角测量,无人驾驶工程机械动臂/货箱角度测量、波浪补偿与平台稳定等方面。

2.1 无人驾驶工程机械动臂/货箱角度测量

由于矿区环境恶劣,司机从业意愿低,招工难、管理难,人工费高,而且矿机车型大、盲区多,操作复杂,因而司机作业易疲劳,常发生安全生产事故。近年来无人驾驶的工程机械逐渐成为主流。倾角传感器能够描述这类工程机械动臂/货箱的空间角度,为无人驾驶工程机械提供稳定的姿态信息。

图 1 无人工程机械

2.2 道路、桥梁、轨道、建筑、工业设备倾角测量

倾角测量的主要应用场景包括桥梁架设、铁路铺设、土木工程、建筑工程、石油钻井、航空 航海、工业自动化、智能平台和机械加工等领域。倾角传感器在这些领域中用于测量系统的水平 角度变化,确保设备的稳定性和安全性。

图 2 倾角测量

2.3 波浪补偿与平台稳定

波浪补偿旨在减少海上作业中波浪对起重设备的影响,确保作业的稳定性和安全性。它主要通过倾角传感器探测波浪运动,并通过补偿装置抵消这些运动,从而保持负载的稳定。主动式波浪补偿(AHC)通过动力执行器主动抵消倾角传感器检测到的运动,具有高精度和实时响应的特点,这种技术广泛应用于船舶和海上平台上的起重设备。

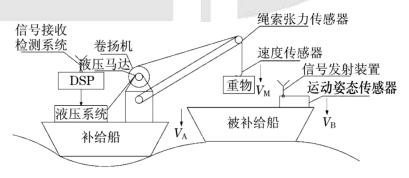


图 4 波浪补偿

中国·大连·高新技术产业园区高新街 2 号 3F

3. 机电性能

3.1 物理性能

表 1 物理特性

产品	描述
尺寸	56×44×22.1mm ³
重量	90g
防护等级	IP68
封装材料	高分子材料
封装工艺	全固态一体一次成型
输出信号	数字型

3.2 电气连接

表 2 电气连接

产品	描述
工作电压	5~60VDC
工作电流	24 mA(12V)
额定功率	288mW
连接器	M12-8pin 航空连接器
电缆	8pin 双绞屏蔽防水航空电缆
功能接口	CAN

3.3 环境可靠性

表 3 环境可靠性

产品	严酷等级
振动强度	X和Y轴, 10-1000Hz, 100m/s²; Z轴, 10-1000Hz, 500m/s²
冲击强度	峰值加速度 19600m/s²,标称脉冲持续时间 0.2ms,速度变化量:
(中田)思/支	半正弦波 3.4m/s, 后峰锯齿波 2.7m/s, 梯形波 4.9m/s
温度环境	工作温度: -40-105℃ 存储温度: -40-125℃
湿度环境	-10℃-65℃,相对湿度 45%-96%
快速温变	-40℃-85℃,温度变化速率(15+3)K/min

3.4 电磁兼容性

表 4 电磁兼容性

静电放电抗扰度(ESD)	电磁辐射抗扰度(RS)	沿电源线瞬态传导(CS)
133 134 134 134 (202)		IH CONTRACTOR OF CONTRACTOR

等级 4 级,性能判据 B

场强 50V/M, 1米法, 性能判据 A

等级III级,性能判据B

4. 感测性能

4.1 系统性能参数

表 5 系统性能参数

	指标	参数
	系统启动时间	0.3s
	输出数据	俯仰角、横滚角、三轴加速度、三轴角速度
动态范围		Pitch: -90~+90°; Roll: -180~+180°
	加速度量程	±2g/4g/8g/16g(默认±2g)
	角速度量程	±250/500/1000/2000dps(默认±1000dps)
静	态精度(俯仰/横滚)	0.02deg
动	态精度(俯仰/横滚)	0.5deg
角度分辨率		0.0001deg
A	最大更新率	100Hz
	总噪声	0.05°/s @RMS
	角度随机游走(10Hz)	0.005°/s/√Hz
陀螺仪	零偏不稳定性(10s)	8°/h (Allan 方差)
	非线性	0.2%
	最大更新速率	1000Hz
	灵敏度随温度变化率	±0.02%/°C
	加速度随机游走(10Hz)	400 μg/√Hz
加速度计	零偏不稳定性	100μg(Allan 方差)
1XVI	非线性	0. 5%
	最大更新速率	1000Hz

4.2稳定性性能参数

表 6 稳定性性能参数

指标	俯仰角	横滚角	加速度	角速度
时间漂移	0.001° /h	0.001° /h	0.001g/h	0.04dps/h
温度漂移	0.001° /℃	0.001° /°C	0.001g/℃	0.1dps/℃

4.3 线性性能参数

表	7	线	性	性	船	糸	粉
ル	•		ᄔ	ᄔ	HL	~	双人

指标	角速度	加速度
启动时间	100ms	100ms
维度	三轴	三轴
ADC 位数	16Bit	16Bit
最小量程	±250dps	±2g
满量程	±2000dps	±16g

表 8 各模块量程及对应分辨率

模块种类	量程		分辨率
	±2g	in the second	1/16384 (g/LSB)
三轴加速度	±4g		1/8192 (g/LSB)
二抽加压度	±8g		1/4096 (g/LSB)
	±16g		1/2048 (g/LSB)
三轴角速度	±250dps		125/16384 (dps/LSB)
	±500dps		125/8192 (dps/LSB)
	±1000dps		125/4096 (dps/LSB)
	±2000dps		125/2048 (dps/LSB)

5. 数据通信协议

5.1 协议基础

5.1.1 通信方式

工业级倾角传感器 VRU620PRC-CAN 支持 J1939 通信协议,用于传感器与主控机之间信息报文的传输和接收。

5.1.2 数据类型

通信协议使用的数据类型如表 9 所示:

表 9 数据类型

数据类型	描述及要求		
Signed	有符号整型(24位/16位)		
Unsigned	无符号整型(8位)		

5.1.3 报文类型

根据功能和类型, 传感器支持的报文分为两大类共 5 种:

- 1. 传感器发送给主控机的报文
 - (1) 姿态角报文(Normal),包含传感器解算后得出的俯仰角、横滚角、解算速率;
- (2) 三轴加速度报文(Normal),数据部分直接由加速度计给出,包含 X 轴加速度、Y 轴加速度、Z 轴加速度、超时校准提示和故障提示;
- (3) 三轴角速度报文(Normal),数据部分直接由陀螺仪给出,包含 X 轴角速度、Y 轴角速度、Z 轴角速度、陀螺仪校准反馈和加速度计校准反馈。
 - 2. 主控机发送给传感器的报文
 - (1) 传感器参数设置命令(Normal), 主控机发送参数命令控制传感器的工作模式;
 - (2) 传感器校准设置命令(Normal), 主控机发送校准命令控制传感器校准。

5.2 报文标识符

J1939 报文标识符中包含了主从机每条报文的优先级与接收目标等信息,报文标识符结构 图如表 10 所示:

表 10 报文标识符结构

3 位	1位	1位	8位	8位	8位
优先级(P)	保留位(R)	数据页位(DP)	PDU 格式(PF)	PDU 特定(PS)	源地址(SA)

报文所用标识符如表 11 所示

(1) 发送报文

表 11 发送报文所用标识符

报文名称	标识符
姿态角报文	0x18E1A101
三轴加速度报文	0x18E2A101
三轴角速度报文	0x18E3A101

(2) 接收报文

传感器接收报文所用标识符为: 0x00000009

5.3 报文数据体

5.3.1 发送报文的数据体

发送报文的数据体封装了传感器的数据值,不同类型的报文其数据体格式也是各不相同,故有4种不同类型的数据体格式。此外,传感器发送的报文均使用Intel排列格式,数据高位占高字节,低位占低字节。

(1) 传感器解算后的姿态角报文的数据体格式如表 12 所示:

表 12 传感器解算后的姿态角报文的数据体格式

起始	起始	精度	偏移	字段	数据类型	描述及要求
字节	位		量			
						俯仰角是一个24位的三字节数,并且首
						字节的最高位代表正负(0为正1为负),
						后面 23 位代表数据大小。假设输出俯仰
0	0	0.0001	0	俯仰角	Signed	角值为 0X089300,实际数值计算方法为:
						0X089300=>(+1)*0X089300*(对应分辨
						率)=>56.1920°,解算后姿态角分辨率已
	A				在表 5 给出。	
3	24	0.0001	0	横滚角	Signed	同上所述
		7 /		姿态解		姿态解算速率是指每秒进行的姿态解算
6	48	1	0		Unsigned	频率,它是一个16位的双字节,并且只
		i l		算速率	-	能是正数

(2) 三轴加速度报文如表 13 所示:

表 13 三轴加速度报文的数据体格式

起始字节	起始位	精度	偏移量	字段	数据类型	描述及要求
0	0	1/16384	0	加速度 X 轴值	Signed	加速度 X 轴是一个 16 位的双字节数,最高位为正负符号位(0 为正 1 为负),后面 15 位代表数据大小。假设 X 轴的输出值为 0X8523,实际数值计算方法为: 0X8523 => (-1)*0X0523*(对应分辨率) => -0.0319g,原始 ADC 分辨率已在表 8 给出。
2	16	1/16384	0	加速度 Y 轴值	Signed	同上所述
4	32	1/16384	0	加速度 Z 轴值	Signed	同上所述

6	48	1	0	校准提示	Unsigned	8 位无符号数,长时间未校准时值为 0x01
7	56	1	0	故障提示	Unsigned	8 位无符号数, 传感器故障时值为 0x01

(3) 三轴角速度报文如表 14 所示:

表 14 三轴角速度报文的数据体格式

起始	起始	精度	偏移量	字段	数据类型	描述及要求
字节	位	作儿文	一個物里	于权 	数师天空	
0	0	125/4096	0	角速度 X 轴值	Signed	角速度 X 轴值是一个 16 位的双字节数,最高位为正负符号位(0 为正 1 为负),后面 15 位代表数据大小。假设 X 轴的输出值为 0X8523,实际数值计算方法为: 0X8523 => (-1)*0X0523*(对应分辨率) => -0.0319°/s,原始 ADC 分辨率已在表 8 给出。
2	16	125/4096	0	角速度 Y 轴值	Signed	同上所述
4	32	125/4096	0	角速度 Z 轴值	Signed	同上所述
6	48	1	0	陀螺仪校 准反馈	Unsigned	8 位无符号数,校准成功时值为 0x01
7	56	1	0	加速度计校准反馈	Unsigned	同上所述

5.3.2 接收报文的数据体

传感器接收报文的数据体以一定的结构固定排列,包括报文长度1字节、命令类型1字节与其他数据,总计数据长度为8字节。

(1) 传感器参数设置命令报文的数据体格式如表 15 所示:

表 15 传感器参数设置命令报文的数据体格式

inerua Miero System (Dallan)							
0	数据长度	Unsigned	08				
1	命令类型	Unsigned	B2				
			00: ±2g				
2	加油库具和汎盟	TT ' 1	01: ±4g				
2	加速度量程设置	Unsigned	02: ±8g				
			03: ±16g				
			00: ±250° /s				
2	布油度是积 识器	I Ingi ang 4	01: ±500° /s				
3	角速度量程设置	Unsigned	02: $\pm 1000^{\circ}$ /s				
		constitution of the same	$03: \pm 2000^{\circ} / s$				
	需要的传感器报 文类型	Unsigned	00: 传感器原始	ì的 ADC 数据			
4			01: 解算后的姿态角				
			02: 两种数据报	文同时支持			
			00: 10 (帧/秒)				
		Unsigned	01: 20 (帧/秒)				
5	传感器上传帧率		02: 50 (帧/秒)				
			03: 70 (帧/秒)				
			04: 100 (帧/秒)			
		Unsigned	00:50k	01:83.3k			
(波特率设置		02:100k	03:125k			
6			04:250k	05:500k			
			06:800k	07:1000k			
	550A.		166	P .			

传感器参数设置命令,用户可以根据上表提供的报文格式使用用户的主控机下发给传感器。

(4) 传感器校准的数据体格式如表 16 所示:

表 16 传感器校准的数据体格式

起始字节	字段	数据类型	描述及要求		
0	数据长度	Unsigned 08			
1	命令类型	Ungionad	位 1:0	AB: 水平校准	
1	叩令矢空	Unsigned	197. 1:0	00: 陀螺校准	

传感器校准命令,用户可以根据上表提供的报文格式使用用户的主控机下发给传感器。

6. 产品组件

- 传感器主体(1个)
- M12-8pin 航空连接器(1个,固定在传感器主体上)
- 双绞屏蔽防水航空电缆(8pin, 1m)。
- 内六角安装螺栓、锁紧螺母、弹垫、垫片(4个)、扳手1个

中国·大连·高新技术产业园区高新街 2 号 3F

图 7 安装螺栓各部件尺寸

8. 电缆与航空连接器引脚定义

表 16 电缆接线定义

电缆接线定义					
引脚号	颜色	定义			
1	White	V+			
2	Brown	GND			
3	Green	NC			
4	Yellow	NC			
5	Gray	CAN 终端电阻			
6	Pink	CAN 终端电阻			
7	Blue	CAN-H			
8	Red	CAN-L			

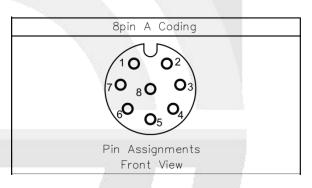


图 8 航空连接器引脚定义

备注: 5、6 两脚短接: 带 120 Ω 电阻; 5、6 脚不接: 无 120 Ω 电阻。

9. 通信接口

- (1) CAN 总线接口. 波特率默认为 250kbps;
- (2) 电缆长度与线束端接口可根据客户要求定制;

10. 安装使用指南

- (1) 传感器应水平朝前安装(X 轴箭头方向)与被测载体的机头方向一致。强烈的震动会影响传感器解算精度,建议将传感器安装在减震架上。为了提高测量数据的准确性,传感器尽量安装在被测载体的重心位置。
- (2) 传感器应水平安装,采用本公司提供的紧固件固定。为提高姿态测量精度,安装完成后可利用本公司仿真软件或客户终端 MCU 按校准规则编写校准指令进行水平和陀螺校准。
- (3) 传感器出厂已完成姿态标定,客户无须再次校准,若长时间使用后出现航向姿态误差增大,可按前述规则进行校准。